المركز الإقليمي لتدريس علوم و تكنولوجيا الفضاء لغرب أسيا / الأمم المتحدة

New Method May Resolve Difficulty in Measuring Universe’s Expansion

National Radio Astronomy Observatory

 New observations with radio telescopes show that such events can be used to measure the expansion rate of the Universe.

Astronomers using National Science Foundation (NSF) radio telescopes have demonstrated how a combination of gravitational-wave and radio observations, along with theoretical modeling, can turn the mergers of pairs of neutron stars into a “cosmic ruler” capable of measuring the expansion of the Universe and resolving an outstanding question over its rate.

The astronomers used the NSF’s Very Long Baseline Array (VLBA), the Karl G. Jansky Very Large Array (VLA) and the Robert C. Byrd Green Bank Telescope (GBT) to study the aftermath of the collision of two neutron stars that produced gravitational waves detected in 2017. This event offered a new way to measure the expansion rate of the Universe, known by scientists as the Hubble Constant. The expansion rate of the Universe can be used to determine its size and age, as well as serve as an essential tool for interpreting observations of objects elsewhere in the Universe.

“The neutron star merger gives us a new way of measuring the Hubble Constant, and hopefully of resolving the problem,” said Kunal Mooley, of the National Radio Astronomy Observatory (NRAO) and Caltech.

https://public.nrao.edu/news/new-method-measuring-universe-expansion/